变电站自动化和无人值班是当今电网调度自动化领域的热门课题,其发展势头正方兴未艾。国外有一种观点认为,人容易受环境、情绪、性格、疾病等诸多因素影响,因此本身就是一个不可靠因素。确实有不少事故是由人为误操作引起的,从这个角度看,无人值班确实可以提高运行可靠性。例如郑州地调早在1959年就开始采用遥控技术,30多年来从未发生误操作;又如深圳供电局实现变电站无人值班后,误操作事故率降低了60%。
变电站自动化是在计算机技术和网络通信技术的基础上发展起来的。国外在八十年代已有分散式变电站自动化系统问世,以西门子(SIEMENS)公司为例,该公司第1套全分散式变电站自动化系统LSA678早在1985年就在德国汉诺威投入运行,至1993年初已有300多套系统在德国及欧洲的各种电压等级的变电站运行。我国的变电站自动化工作起步较晚,大约从九十年代开始,初始阶段主要研制和生产集中式的变电站自动化系统,例DISA-1型[1],BJ-1型[2],iES-60型,XWJK-1000A型,FD-97等。九十年代中期开始研制分散式变电站自动化系统,如DISA-2型,DISA-3型[3,4],BJ-F3,CSC-2000型[5],DCAP3200型,FDK型等,与国外先进水平相比,大约有十年的差距。许多高校、科研单位、制造厂家以及规划设计、基建和运行部门在学习和借鉴国外先进技术的同时,正结合我国的实际情况共同努力继续开发更加符合我国国情的变电站自动化系统[3,4,6~12]。可以预计,今后其发展和推广的速度会越来越快,与国外的差距会逐步缩小。
为了加快我国变电站自动化技术发展步代,创造更大的效益,有必要论述和探讨变电站自动化的设计原则、工作模式和发展策略,以期达成共识。
一、设计原则
a.变电站自动化系统作为电网调度自动化的一个子系统,应服从电网调度自动化的总体设计,其配置、功能包括设备的布置应满足电网安全、优质、经济运行以及信息分层传输、资源共享的原则。
b.分散式系统的功能配置宜采用下放的原则,凡可以在间隔层就完成的功能如保护、备用电源自投、电压控制等,无须通过网络和上位机去完成。220kV枢纽站及220kV电压等级以上的变电站,其网络层和站级层宜采用双重化、冗余配置,以提高系统可靠性。
c.按我国的实际情况,目前变电站还不大可能完全无人值守,即使是无人值守,也有一个现场维护、调试和应急处理的问题,因此设计时应考虑远方与就地控制操作并存的模式。同样,保护单元亦应具有远方、就地投切和在线修改整定值的功能,以远方为主,就地为铺,并应从设计、制造上保证同一时间只允许其中一种控制方式有效。
d.站内自动化及无人值班站的接入系统设计应从技术上保证站内自动化系统的硬件接口满足国际标准。系统的支撑软件符合ISO开放系统规定,系统的各类数据、通信规约及网络协议的定义、格式、编程、地址等与相应的电网调度自动化系统保持一致,以适应电力工业信息化的发展要求。
e.要积极而慎重地推行保护、测量、控制一体化设计,确保保护功能的相对独立性和动作可靠性。分布式系统的SOE分辨率通过保护单元来实现。保护、测量、控制原则上可合用电压互感器(TV),对电量计费、功率总加等有精度要求的量可接量测电流互感器(TA),供监测用的量可合用保护TA。
f.变电站自动化系统设计中应优先采用交流采样技术,减轻TA,TV的负载,提高测量精度。同时可取消光字牌屏和中央信号屏,简化控制屏,由计算机承担信号监视功能,使任一信息做到一次采集、多次使用,提高信息的实时性、可靠性,节约占地空间,减少屏柜,二次电缆和设计、安装、维护工作量。
g.目前无论国内还是国外的分散式变电站自动化系统各部件之间的联系大部分采用串行口通信方式(RS232C,RS422,RS485总线等),其通信速率和资源共享程度均受到限制,故建议采用局域网(LAN)通信方式,尤其是平等(peertopeer)网络,如总线型网(介质共享型),即网上每个节点都可与网上其他节点直接通信,例CSC-2000型采用的LonWorks网,DISA-2,DISA-3型采用的CANnet(controlareanetwork)网等[3-5]。
h.变电站内存在强大的电磁场干扰。从抗电磁干扰角度考虑,在选择通信介质时可优先采用光纤通信方式,这一点对分散式变电站自动化系统尤为适用。例LSA678,DISA-2,DISA-3型等均采用了光纤通信方式。但鉴于光纤安装、维护复杂及费用相对较高,因此配电站宜以电缆为通信介质。