伺服系统是以机械运动的驱动设备,电机为控制对象,以控制器为核心,以电力电子功率变换装置为执行机构,在自动控制理论的指导下组成的电气传动自动控制系统。
作为数控机床的执行机构,伺服系统将电力电子器件、控制、驱动及保护等集为一体,并随着数字脉宽调制技术、特种电机材料技术、微电子技术及现代控制技术的进步,经历了从步进到直流,进而到交流的发展历程。
伺服系统的结构及分类:从基本结构来看,伺服系统主要由三部分组成:控制器、功率驱动装置、反馈装置和电机。控制器按照数控系统的给定值和通过反馈装置检测的实际运行值的差,调节控制量;功率驱动装置作为系统的主回路,一方面按控制量的大小将电网中的电能作用到电机之上,调节电机转矩的大小,另一方面按电机的要求把恒压恒频的电网供电转换为电机所需的交流电或直流电;电机则按供电大小拖动机械运转。
步进伺服是一种用脉冲信号进行控制,并将脉冲信号转换成相应的角位移的控制系统。其角位移与脉冲数成正比,转速与脉冲频率成正比,通过改变脉冲频率可调节电机的转速。如果停机后某些绕组仍保持通电状态,则系统还具有自锁能力。步进电机每转一周都有固定的步数,如500步、1000步、50 000步等等,从理论上讲其步距误差不会累计。
步进伺服结构简单,符合系统数字化发展需要,但精度差、能耗高、速度低,且其功率越大移动速度越低。特别是步进伺服易于失步,使其主要用于速度与精度要求不高的经济型数控机床及旧设备改造。
但近年发展起来的恒斩波驱动、PWM驱动、微步驱动、超微步驱动和混合伺服技术,使得步进电机的高、低频特性得到了很大的提高,特别是随着智能超微步驱动技术的发展,将把步进伺服电机的性能提高到一个新的水平。