CA168首页 > 自动化信息 > 企业信息 > 信息详情

第16讲:DIPIPM™的特殊应用

发布日期:2025-12-08 来源:三菱电机半导体作者:网络





 3.8  DIPIPM™的特殊应用

3.8.1  DIPIPM™在H桥应用中的注意要点

应该很多用户都注意到了,目前的DIPIPM™都是3相桥电路。如果我只需要两个桥臂做一个H桥的电源,应该怎么弄呢?今天我们就来聊聊这个问题。

3.8.1.1 功率部分

既然是H桥那就是有一个桥臂不需要使用。我们应该放弃哪一个桥臂呢?

从发热的角度来说,我们建议放弃V相。这样U相和W相的发热距离更远,相互之间的热干扰也更少。如图1所示。

图1    小型DIPIPM™在H桥应用中的发热示意图

既然有一个桥臂不用了,那么仿真软件还能用么?

仿真软件还能继续用,只是部分数值需要调整。

 

图2所示为DIPIPM™在H桥应用中的结温计算模型。我们以PSS50S73F6为例演示一下其在H桥应用中的功耗仿真。

图2    DIPIPM™在H桥应用中的结温计算模型

仿真条件:SVPWM, Vcc=300V, Io=50Apeak, PF=0.8, M=1, fc=5kHz, fo=60Hz, Ts=100℃

 

图3是该工况下功耗仿真软件的仿真界面。

图3    PSS50S73F6仿真结果
表1所示,由于少了V相桥臂的发热,整体损耗下降了1/3,对应的△T(c-s)也相应下降。U相和W相的结温也有所下降。当然V相由于没有工作,Tj=Tc,并没有额外的温升。

表1    三相桥和H桥仿真计算对比

3.8.1.2 控制部分

 

功率部分明白了,那么对应的控制部分要怎么处理呢?

主要分两部分。一是短接自举电源,不给上桥臂供电。二是控制信号直接拉低,防止V相误动作。具体可以参见图4

图4    DIPIPM H桥运行推荐电路

3.8.2  多DIPIPM™共地应用中的注意要点

第3.4讲《DIPIPM™的PCB布板应用要点》中我们提到过,DIPIPM™的布线核心是单点接地。这个结论的前提是系统中只有一个功率半导体。而实际系统中,常常会有多个功率半导体。比如变频空调的控制板涉及4个功率器件,开关电源的MOSFET,PFC的IGBT,驱动压缩机的DIPIPM™和驱动风机的DIPIPM™。再比如多轴伺服里常遇到的4-6轴驱动器。

每个功率半导体都有自身的控制回路和功率回路。多个功率半导体共用控制回路自然会导致多点接地,进而形成地线环路。那么我们应该怎么做呢?

 

3.8.2.1 应用手册中的描述


图5    应用手册中关于DIPIPM™并联的描述

在三菱电机的应用手册中,实际上并不推荐两片DIPIPM™共用一组15V电源。如上图所示,电流路径1会经过较长的PCB走线,从而导致更多的噪音和误动作。

3.8.2.2 地线改善思路

 

虽然三菱电机并不推荐这样的应用,但是面对老板的要求,我们还是要努力一下的。




图6    多DIPIPM™应用中的电流路径

针对DIPIPM1,首先需要增加一条控制地到功率地的短接线,希望DIPIPM1的下桥臂充电电流沿着电流路径3 (绿色)前进。

由于电流路径1仍然是没有阻抗的。所以电流路径1电流路径3将同时存在。另外,黄圈部分会形成一个新的地线环路。我们需要通过增加阻抗让电流选择电流路径3

黄圈的右边沿走线实际是功率地的走线,不适合增加电阻。

黄圈的下边沿同时也是电流2的回路,在此处增加阻抗,会影响DIPIPM2的开关速度。

黄圈的上边沿增加阻抗,将使电流偏向电流路径1。这并不符合我们的期望。

 

黄圈的左边沿更适合增加阻抗,使电流偏向路径3,见下图7


图7    多DIPIPM™应用中的接地方案

3.8.2.3 一些说明

a)实践经验表明,该电阻应该小于0.5Ω。过大的电阻可能会引起地线波动,进而引起误动作。

b)也有一些用户使用了磁珠/电感之类的器件代替电阻。大家可以自行测试。

c)该方案比较直观的现象是控制电源+15V/5V上的噪声等级会有所下降。

d)多轴伺服用户可以自行拓展至4轴和6轴,已经有小白鼠吃过螃蟹了(看起来胃口不错)。

e)最后祝调试顺利。

 

3.8.3  DIPIPM™在整流应用中的注意要点

讲了这么多DIPIPM™在逆变电路中的应用,今天我们来讲讲DIPIPM™在整流中的应用。

图8是一个典型的背靠背电机驱动器的拓扑图。这个拓扑比较常见的应用场景包括风力发电,电梯变频器,油田磕头机等。其主要目的是利用能量的双向流动实现节能乃至发电。

对于DIPIPM™来说,由于规格比较小,类似的应用场景并不多,比较典型的是商用空调。其中DIPIPM1作为PWM整流器使用,而DIPIPM2作为逆变器驱动空调压缩机。

图8    背靠背拓扑图

从驱动器规格的角度来看,两个DIPIPM™对应的整流器规格和逆变器规格应该是一致的。比如我需要10kW的电驱动压缩机,那对应的PWM整流器也应该能提供10kW的电。所以两个DIPIPM™的规格应该是一致。

 

大体上这个思路是对的。但是会有1个隐蔽的细节可能会影响具体选型。这就是功率因数(PF)。我们知道功率因数(PF)来自电压电流的相位角(cosθ)。θ的变化又带来了有功功率和无功功率。根据有功功率和无功功率的正负,又分成了图9里的4个象限。


图9    4象限运行
当然,对于商用空调驱动器来说情况没有那么复杂。因为能量的方向只有一个,如图10所示。对于DIPIPM2和压缩机而言,DIPIPM2是电源,压缩机是负载,能量从DIPIPM2流向压缩机。而对于DIPIPM1和电感而言,能量的流向是反着的,是从电感流向电源。所以电感是发出功率,DIPIPM1是吸收功率,对应的cosθ/PF也都是负数。

图10    商用空调驱动器中的能量流动
那么PF为负值对DIPIPM™的仿真会带来什么影响呢?我们来看一组仿真结果,区别只有PF的正负。
表2    PF对功耗仿真的影响

表2中我们可以看出,在PF为正时,IGBT的温升远高于二极管。当PF为负时,二极管的温升则反超了IGBT。

所以在PWM整流器的选型中,功率因数是要用负值,并且二极管的温升是重点的关注对象。在某些应用中有可能因为二极管温升过高,导致必须提升一档的情况。

 

另外,DIPIPM™用在PWM整流器时的PCB设计可以参考上一讲的《多DIPIPM™共地应用中的注意要点》。相信我,你的老板不会允许用2路隔离电源的。

 

 

 

[信息搜索] [] [告诉好友] [打印本文] [关闭窗口] [返回顶部]

上一篇:第15讲:DIPIPM™在装配产线中应用注意事项

下一篇:暂无

免责申明

       本文仅代表作者个人观点,与中自网无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容!来源网络如有误有侵权则删。

视觉焦点