CA168首页 > 自动化信息 > 综合信息 > 信息详情

存储与GPU性能皆已成倍增长,IO表现为何迟迟不见好转?

发布日期:2021-07-09 来源: 电子发烧友网作者:网络
 
伴随着HPC、自动驾驶、深度学习和VR/AR需求的不断增加,IO性能也在逐步凸显瓶颈,尤其是GPU与存储之间的读写。处理器速度已经从KHz进化至了GHz,VRAM从KB进化至了GB,IO速度也从KB/s进化至了GB/s,然而GB/s的大幅度改善从直观角度来看依然像是MB/s

比如在有线连接的VR应用中,图形需要经过电脑进行处理,再经有线传输显示在VR屏幕上,这就引发了高延迟和长读取时间等问题。这不禁让人开始遐想,在CPU、GPU和存储都已经革新换代的情况下,我们是否真正有效地应用了硬件性能?为此微软和英伟达都提出了直接存储的概念来改善IO的现状。

微软:Windows上的DirectStorage

 

微软在不久前的Windows 11发布会上重点提到了DirectStorage技术,这是一个最初为主机设计的DirectX API,如今微软也将把这一技术带到PC上。

在当前NVMe SSD和PCIe技术的演进下,存储带宽远超旧式的硬盘存储技术,过去10MB每秒的速度已经达到数GB每秒。但PC上的图形工作量也在逐步进化,数据量的增加对于读取提出了更高的要求。过去大量数据的读取只需要少量的IO请求,但如今的图形渲染会将材质等资源分成小块,只有在场景提出要求时载入所需的部分,如此一来虽然提高了效率,却引入了更多IO请求。

当前的GPU资源读取流程 微软

而目前的存储API并没有对大量IO请求作出优化,因此拖累了NVMe,使得读写瓶颈愈发明显。即便采用高端的PC硬件,也无法饱和利用存储带宽优势。除此之外,这些数据往往需要经过压缩传输下一个环节,传入内存后,还要CPU进行一部分解压工作,最后再传入GPU显存里,这样一来每个节点都存在效率损失。

而DirectStorage采用了全新的路径,从存储读取的数据传给内存后,直接传给GPU显存。而GPU对于这些数据的解压速度远快于CPU,所以极大地优化了IO性能。

英伟达:RTX IO和Magnum IO GPUDirect Storage

 

英伟达在RTX 30系列显卡上引入了RTX IO,面向消费市场,提升游戏场景下的读取速度。英伟达称RTX IO将与微软的DirectStorage结合,与传统硬盘下的存储API相比,可将IO性能提高百倍。过去需要数十个CPU内核的工作全部交由RTX GPU来处理。

值得一提的是,英伟达的RTX IO虽然也用到了微软的DirectStorage,但该技术并没有将数据传输到内存,而是直接由SSD转向GPU。微软一名图形开发者在GSL 2021大会上表示,未来DirectStorage的目标也是绕过系统内存。

GDS技术 / 英伟达

除了消费市场外,英伟达在HPC市场也推出了对应的直接存储技术,Magnum IO GPUDirect Storage(GDS)。GDS技术同样是一个绕过CPU的技术,与消费级GPU不同,HPC场景下往往要用到多块GPU,如此一来受IO延迟和CPU的影响更大。GDS在本地存储与GPU显存之间建立直接的数据通道,消除了CPU引入的延迟和读写瓶颈。

GDS与CPU传输至GPU读取性能对比 / 英伟达

在运用GDS后,带宽提升达到1.5倍,与传统CPU回弹缓冲的数据路径相比,CPU利用率也有2.8倍的提升。

目前英伟达已经将这一技术加入到其HGX AI超算中,DDN、VAST和WEKA三家公司已经开始了相关产品的量产,而IBM、美光等五家厂商也在积极引入这一技术。三星、铠侠、西数和戴尔等厂商也开始了GDS的早期集成与认证计划。

小结

 

直接存储技术进一步放大了GPU厂商与存储厂商的优势,目前HPC市场前景巨大,英伟达在相关业务上的盈利已经让其看到了商机。不仅是GPU,英伟达采用Arm架构的Grace CPU同样引入了NVLink这样的数据传输改善方案。在这样的性能改善下,即便存储方案不同,英伟达的GPU也很可能成为HPC应用的首选。

[信息搜索] [] [告诉好友] [打印本文] [关闭窗口] [返回顶部]
0条 [查看全部]  网友评论

视觉焦点