传统上,电子设备和热管理系统是分开设计和制造的,瑞士洛桑埃科尔理工学院的电气工程教授Elison Matioli说。这给提高冷却效率带来了一个根本性的障碍,因为热量必须在多个材料中传播相对较长的距离才能去除。例如,在今天的处理器中,热材料虹吸管将热量从芯片转移到体积庞大的风冷铜散热片上。
为了获得更节能的解决方案,Matioli和他的同事开发了一种低成本的工艺,将微流控冷却通道的3D网络直接放入半导体芯片中。液体比空气更能去除热量,其想法是将冷却液千分尺远离芯片热点。
但与之前报道的微流控冷却技术不同,他说:“我们从一开始就设计电子器件和冷却系统。”因此,微通道就在每个晶体管器件的有源区下方,在那里它的温度最高,这使冷却性能提高了50倍。他们在近日的《自然》杂志上报道了他们的共同设计理念。
研究人员早在1981年就提出了微通道冷却技术,而Cooligy等初创公司也一直在追求处理器的理念。但半导体产业正从平面器件转向三维器件,并朝着多层结构的未来芯片发展,这使得冷却通道变得不切实际。“这种嵌入式冷却解决方案不适用于现代处理器和芯片,如CPU,”Tiwei Wei说,他在比利时的Interuniversity Microelectronics Center和KU Luuven研究电子冷却解决方案。“相反,这种冷却技术对电力电子最有意义,”他说。
电力电子电路管理和转换电能,广泛应用于计算机、数据中心、太阳能电池板和电动汽车等领域。他们使用了大面积分立器件,由宽禁带半导体如氮化镓制成。这些设备的功率密度在过去几年里急剧上升,这意味着它们必须“与一个巨大的散热器挂钩”,Matoli说。
最近,电力电子模块已经转向液体冷却,无论是通过冷板还是微通道冷却系统。但是,迄今为止,所有的微通道冷却系统都是单独制造的,然后与芯片结合。键合层增加了耐热性,通道和电路设备不紧密对齐。
“我们把它提升到了下一个水平,”Matoli说,通过在同一芯片中制造设备和冷却通道。他们在涂覆在硅衬底上的氮化镓层中蚀刻微米宽的裂痕。缝长30μm,深115μm。利用特殊的气体刻蚀技术,它们拓宽硅衬底上的缝隙,形成液体冷却液通过的通道。
然后,研究人员利用铜密封氮化镓层中的微小开口,在上面制造设备。他说:“我们只在晶圆的微小区域有微通道,这些微通道与每一个晶体管都有接触。这使得这项技术更加有效,因为我们可以从附近提取大量的热量,但我们使用的抽水功率非常小。”
作为演示,研究人员制作了一个由四个Schottky二极管组成的交流-直流整流电路,每个二极管可以处理1.2kV的电压,像这样的电路通常需要一个拳头大小的散热器。但是集成了液体冷却系统的电路芯片安装在一块U盘大小的印刷电路板上,电路板由三层组成,上面刻有通道,将冷却液输送到芯片上。
该显示表明,功率密度超过1700瓦/平方厘米的热点,仅使用0.57瓦/平方厘米的泵送功率就可以冷却。与之前报道的微流控通道冷却相比,性能提高了50倍。
Wei说,“氮化镓薄膜和铜密封层的可靠性应该随着时间的推移进行研究。但这种创新的冷却解决方案是朝着“低成本、超紧凑和节能的电力电子冷却系统”迈进的一大步。”