CA168首页 > 自动化信息 > 产品信息 > 信息详情

最大限度减少功率电感的 EMC 干扰

发布日期:2022-11-17 作者:网络

通常,开关型稳压电源没有功率电感就不能工作但是,如果您想改善它们EMC的性能,可以从几个方面入手,包括屏蔽效率、绕组起绕点和开关转换。

DC/DC 开关电源源管理中至关重要,因为它们可以实现高效的电源供应。在这种情况下,功率电感电源电路的关键元件,尽管开发过程通常只关注它的电气特性,例如 RDC、RAC损耗,电磁辐射特性经常被忽视。图 1 展示的是典型带有开关 S1 和 S2 的开关 DC/DC 电源电路

 

图 1:典型具有开关 S1 和 S2 的 DC/DC 电路

 

开关电源中的功率电感

在开关电源中,功率电感可以使用各种不同的磁芯材料和绕组类型来设计和组装。此外,功率电感器可分为非屏蔽、半屏蔽或屏蔽三种。每种类型的屏蔽都有不同的优点和缺点,这决定了其应用领域

开关电源的开关过程在电感两端产生交流电压。从实际角度来看,电感可以作为环形天线,电磁辐射取决于许多参数包括磁芯、屏蔽材料以及绕组的起点。

功率电感的开关频率及其谐波在100kHz至30MHz较低频率范围内所发出的电磁辐射不仅取决于电感的屏蔽,还取决于绕组的特性。相比之下电磁辐射在较高的频率范围(30 MHz 至 1 GHz )的电磁辐射是由高频振荡及其谐波引起的,它更多是由磁芯材料的屏蔽特性、开关频率和基本设计所决定的

线圈辐射特性

如前所述,DC/DC 电路功率电感产生的电磁辐射是忽略的还需要考虑相邻元件的类型和间距以及它们对磁耦合的敏感性,这尤其重要。随着工程师对这一潜在 EMC 问题的认识不断增强,元件制造商通过推出新产品系列做出了回应除了常规的非屏蔽电感外,还推出了屏蔽和半屏蔽器件。屏蔽电感将绕组完全密封在磁屏蔽材料制成的结构中。非屏蔽线圈中,绕组通常暴露在外,没有磁屏蔽。电磁场的传播不受限制,它们通常是电磁干扰中最强大的干扰源。通常半屏蔽电感会将磁屏蔽材料通过环氧树脂固定在的外露绕组上。用于测量 DC/DC 开关电源 (DUT) 中的电磁场的测试设置如图 2 所示。

 

图2:用于测量 DC/DC 电源中电磁场的测试装置

与半屏蔽和非屏蔽电感相比,屏蔽电感的主要优势是其磁辐射相对较弱。图 3 展示了这三种屏蔽类型的基本发射特性。

 

图3:非屏蔽、半屏蔽和屏蔽电感的磁场测量结果

一般而言,工程设计限制因素之一是尺寸。与同等尺寸的非屏蔽电感相比,屏蔽电感具有较低的电感和饱和电流,以及较高的制造成本。初级工程师可能倾向于使用非屏蔽电感,因为其尺寸更小、成本更低、饱和电流更高。然而,这选择可能会导致一系列在设计阶段后难以解决的 EMC 问题。

伍尔特电子是少数几家提供半屏蔽电感的制造商之一,这类电感能够成功地填补在空间要求、电气特性和 EMC 之间的差距,尤其适用于电感周边元件对辐射不会特别敏感的场景

如图 4 所示,尺寸为 8040 的 WE-LQS 半屏蔽功率电感器(744 040 841 00)与尺寸为 7345 的 WE-PD 系列的屏蔽电感(744 777 10)和尺寸为 7850 的 WE PD2 系列的非屏蔽电感(744 775 10)相比,具有出色的饱和特性。

 

图4:屏蔽(灰色)、半屏蔽(黑色)和非屏蔽(红色)电感的饱和特性对比

绕组起点的影响

一个经常被忽视的 EMC 关键特性是绕组的起方向,它由电感上的“点”标识(图 5)。将电感标有点的一侧尽可能靠近开关节点连接非常重要,因为这一侧的 dU/dt 值最高,因此干扰最大。外部绕组会屏蔽开关节点在开关时电流切换引起的噪音。如果未标记的一端连接到开关节点,则交流正向电压会出现在外绕组。这可能会导致强烈噪音耦合

 

 

图5:WE-XHMI 和 WE-PD2 电感上标示了绕组起绕点

磁屏蔽电感有效屏蔽了场辐射,但并不总能屏蔽电场辐射。电场的屏蔽效率取决于磁芯材料的特性和磁导率:磁芯材料越强、导磁性越好电感场屏蔽效率就越高。

题为“电源管理中功率电感的电磁辐射特性”的应用文档中提供了对开关转换引起的电磁干扰信号以及近场和远场中各种材料的屏蔽效应的详细讲解[www.we-online.com/ANP047]。

 

关于作者

Ranjith Bramanpalli 于 2008 年毕业于马萨诸塞大学洛厄尔分校,获得了电气工程和计算机科学两个硕士学位。他目前在伍尔特电子eiSos担任产品应用工程师。

[信息搜索] [] [告诉好友] [打印本文] [关闭窗口] [返回顶部]

上一篇:展会直击 | 浩亭亮相德国纽伦堡 SPS 2022

下一篇:智享无限!伟创电气SD100系列低压伺服系统震撼上市

免责申明

       本文仅代表作者个人观点,与中自网无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容!来源网络如有误有侵权则删。

视觉焦点